Abstract
We study non-parametric measures for the problem of comparing distributions, which arise in anomaly detection for continuous time series. Non-parametric measures take two distributions as input and produce two numbers as output: the difference between the input distributions and the statistical significance of this difference. Some of these measures, such as Kullback-Leibler measure, are defined for comparing probability distribution functions (PDFs) and some others, such as Kolmogorov-Smirnov measure, are for cumulative distribution functions (CDFs). We first show how to adapt the PDF based measures to compare CDFs, resulting in a total of 23 CDF based measures. We then provide a unified functional form that subsumes all these measures. We present our methodology to determine the significance of the measures by simulations only. Finally, we evaluate these measures for the anomaly detection in continuous time series.

1 Introduction
In the era of information technology, the volume of data transmitted, handled and elaborated is overwhelming. For example, Yahoo! collects multiple terabytes of data each day, and this volume is increasing. The main reason for collecting this data is to improve the software and hardware systems so as to make them understand what users want and answer user requests almost immediately. It should then be clear that there is a need for automatic detection of the system variations to cope with this volume and speed.

One common way to model the data is in terms of (time) series. Then, the variations can be detected by parametric and non-parametric methods. For example, Holt–Winters [16, 45] is an example of the former. In this work, we turn our attention to the latter. In particular, we investigate the application of non-parametric measures to compute the distance between variations summarized as distributions.

Some distance measures can work with probability distribution functions (PDFs) such as Kullback–Leibler[26] and others with cumulative distribution functions (CDFs) such as Kolmogorov–Smirnov [25]. For ease of reference, we will call the former as PDF measures and the latter as CDF measures. We have observed that multiple measures are more useful than just relying on a single one (e.g., Gestalt effect); moreover, CDF measures are easier to work with because they do not suffer from the problems associated with bucketization and they have nice properties like monotonic growth. As such, our contribution is an extension of almost all PDF measures to work with CDFs, unifying all the measures into a single functional form in the process. In addition, we determine how to provide statistical significance when working with these CDF measures.

The rest of the paper is organized as follows. In Section 2, we introduce the related work and in Section 3, we introduce our notations and the set of measures. In Section 4, we specify the measures for distribution functions and, in Section 5, we present our approach for the evaluation of the measure statistical significance; in particular, in Section 5.4, we explain how we combine measures to have an agreement-based approach and compare our approach with the state-of-the-art approaches. In Section 6, we present our experimental results and in Section 7, our final considerations.

2 Related Work
Distribution comparison is a fundamental technique and has many applications in statistics (e.g., hypothesis testing) and other areas. Many distribution comparison measures have been proposed starting from the early 1930s. For example, a simple search at search engines for scholarly literature returns thousands of results to papers and citations for each distribution comparison measure.

Distribution comparison measures can be applied between one discrete and one continuous distribution or two discrete distributions. We turn our attention to the latter measures because of our interests and their applications in the web search. For the discrete case, inputs to distribution comparison measures are either PDFs or CDFs. In the sequel, for ease of reference, we will refer to such measures as PDF-based measures and CDF-based measures, respectively.

Due to the fundamental nature of distribution comparison, there have been many measures proposed to date. For example, Kullback–Leibler measure [26] and Kolmogorov–Smirnov measure [25] are examples of well-known PDF-based and CDF-based measures, respectively. We present
a full list in Table 1 and each measure is discussed in detail in Section 4.

Three attempts to survey the existing measures are [31] for about 64 measures, [27] for 7 measures for language modeling, and [34] for a broader classification. There have also been attempts to generalize and unify some of the measures. Such work includes [1] and [38], whose measures subsume Kullback–Leibler as a special case. In this paper, we also propose a generalized functional form. To the best of our knowledge, we are unaware of any past attempts to generalize PDF-based measures so that they can also take CDFs as inputs and provide a significance.

As for anomaly detection over time series, the literature is again vast. A short but representative list is martingale methods [40, 14, 15], the applications of Kullback–Leibler measure [6], information-theoretic approaches for material modeling [47], image formation [32], channel denoising [42], and symbolic sequences [11]. All derive from the seminal work by [35], which introduced the concept of entropy for discrete set of probabilities for communication.

Some of the anomaly detection methods require the specification of a handful of parameters or the automatic estimation by means of a minimization process. One well-known example of such parametric methods is Holt–Winters method [16, 45]. Distribution comparison falls in the category of non-parametric methods. For anomaly detection using distribution comparison measures [24], a typical approach is to specify two windows on the time series, one being the reference window and the other being a moving window whose deviation from the reference window is of interest. When each window is considered as a distribution (in the PDF or CDF form, or otherwise using digital signal processing techniques [46] or linked-based [9]), anomaly detection reduces to the comparison of distributions. We also follow this last approach.

In relation to the previous work, our contributions can be summarized as follows:

1. We propose a unified functional form of almost all of the distribution comparison measures.
2. We generalize PDF-based measures to take CDFs as input.
3. We show how to provide statistical significance with these measures.
4. We give experimental results for a single application, namely, anomaly detection on time series.

3 Statistical test, unified measure, and notations

In this section, we introduce our terminology and definitions.

Statistical test. Given two arbitrary (empirical) CDFs \(F_R \) and \(F_W \), a (non-parametric) statistic test is composed of three components:

1. The null hypothesis \(H_0 : F_R \sim F_W \); that is, the distributions are the same.
2. The (distance) measure \(D(F_R, F_W) \), which quantifies the distance between these distributions. We use the term “measure” after [1].
3. The statistical significance, typically with significance levels at 0.05.

Unified Measure. We next present a generalized measure \(D \) that unifies all the measures. It also helps us to abstract the components of a measure and provide a notation for them.

We define the functional \(D \) from \(\mathbb{R}^N \times \mathbb{R}^N \) to \(\mathbb{R} \) using

\[
D_p,\gamma,\psi(r, w) = \varphi(N) \circ \gamma_s \circ \psi_k(r, w) \|_p
\]

where \(D \) takes in the \(N \)-element vectors \(r \) and \(w \) represent the input distributions \(F_R \) and \(F_W \) and produces the final output in four steps (described inside-out):

1. compare the elements of the input vectors in a one-to-one basis using the function \(\psi_k : \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}^N \);
2. aggregate the result using a vector \(p \)-norm \(\|_p \);
3. scale the result using the function \(\gamma_s : \mathbb{R} \rightarrow \mathbb{R} \); and
4. normalize the result using the function \(\varphi : \mathbb{N} \rightarrow \mathbb{R} \) so that the final result will be independent of \(N \) for large \(N \).

Each of these functions in the definition of \(D \) takes different forms for different measures, as shown in Table 1. The only exception is the vector \(p \)-norm, defined as

\[
\|x\|_p = \left(\sum_i |x_i|^p \right)^{\frac{1}{p}}.
\]

For extreme values of \(p \), the \(p \)-norm reduces to

\[
\|x\|_\infty = \max_i |x_i| \quad \text{and} \quad \|x\|_0 = \sum_i x_i
\]

where the definition of \(\|x\|_0 \) is not standardized in the literature; for example, \(\|x\|_0 = \sum \text{sign}(x_i) \) in [10], and in some other sources, \(\|x\|_0 \) is the number of non-zero elements of \(x \). Our vector norm helps simplifying the definition of \(D \).

Terminology about series. A (time) series \(S \) is composed of elements \(s_i = (x_i, y_i) \) where \(i \) is a strictly increasing and non-negative integer, called an epoch to indicate time. The epoch helps ensure a total order of the elements of \(S \). For reference, we identify the most recent or the last element of \(S \) by \(s_t \).

The reference window \(R \) and test window \(W \) are the ordered set of \(N \) successive elements of \(S \). When reduced
to vectors, these windows are represented as \(r \) and \(w \). In practice, these windows typically do not overlap, and both can be made more recent (closer to “now”) depending on the need for defining a new reference.

We compute the distance between the two windows \(R \) and \(W \) using \(D([R])[W] \), as defined in Equation 3.1. To compute the distance, we can use the input vectors for these windows to represent a PDF or CDF, both empirical.

4 Distance Measure Specification

In practice for a finite number of samples, a measure is a quantitative comparison of the distance of two vectors. For example, the Euclidean distance of two \(n \)-dimensional vectors is a norm and a metric (i.e., \(E \geq 0 \), \(E(a, b) = E(b, a) \) and \(E(a, b) + E(b, c) \geq E(a, c) \)). In this spirit, we can extend the use of the measures commonly used for vectors such as the Euclidean distance or PDFs such as information-theoretic measures and to take two CDFs as input parameters.

Considering the scenario where we want to compare two series in \(\mathbb{R} \), notice that we can \textit{always} define the intervals using CDFs, and we can \textit{always} compare two CDFs as vectors or without any arbitrary determination of buckets or reduction to discrete values. Moreover, we notice that two series drawn from the same process will converge to the same CDF (respectively to the same vectors or PDFs) and all the measures will converge to zero. However, the measure output for \textit{different} CDFs can be unbounded and, certainly, larger than in the case of PDFs, e.g., \([0, 2] \) [28]; however, for symmetric measure, the measure output will always be bound to the number of samples in the series.

In particular, symmetric measures are \textit{more} suitable for our needs such as Kullback–Leibler–J Equation 4.5, Jensen–Shannon Equation 4.7, and Variational Equation 4.11. Symmetry assures that the measure is not biased by the reference window. However, we can find application for positive measures such as \(\chi^2 \) in Equation 4.8 because these measures may give better discrimination power when applied to empirical distributions, especially with few observations or because we need to model a non-symmetric measure [27].

We show that 17 of the measures in Table 1 have output CDFs that are independent of the input CDFs. For example, the Kolmogorov–Smirnov has a limit distribution, which is normal, independently of the input stochastic processes. We show this independence in Section 5.3 following the reasoning used for Kolmogorov–Smirnov measure and presenting experimental evidence. Unfortunately, we have found that the generalized functions \(K_r \), \(K_s \), and \(K^2 \) used for PDFs (Equation 4.13, 4.12, and 4.14), in general, will not work for CDFs, because we cannot find a CDF for their output measures (see Section 5.2).

To conclude this section, we must specify that we do not use the geometric measure \(\cos(a, b) \) [41], [20] because this measure compares only the direction of two vectors without considering their magnitude, which we regard as important. Also, we did not investigate the relative frequency model proposed in [36], which was designed to overcome the drawbacks of the cosine measure. Also, we do not consider the resistor distance [19], another symmetric version of the Kullback–Leibler measure.

4.1 Information-theoretic measure extensions In this section, we present the information-theoretic measures extended to apply to CDFs, which is one of our main contributions. For notational convenience, define \(F_{RW/2}(y) \) as \((F_R(y) + F_W(y))/2\).

Kullback–Leibler-I (KLI) [26]. It is an asymmetric measure and \(F_r, F_W \neq 0 \), assuming that undefined values have no contributions. Notice that \(KLI(F_R, F_W) = 0 \) iff \(F_R = F_W \); however if \(F_R \neq F_W \), \(KLI(F_R, F_W) \) can be arbitrarily large.

\[
(4.4) \quad KLI(F_R, F_W) = \sum_{y=0}^{\infty} F_R(y) \log_2 \left(\frac{F_R(y)}{F_W(y)} \right)
\]

The KLI measure can be interpreted as the average of the relative information of the two windows, i.e., \(E[R][\log_2(F_r/F_w)] \).

Kullback–Leibler-J (K LJ) [26] where J stands for Jeffrey’s [1]. It is a symmetric measure and \(F_r, F_W \neq 0 \). Notice that \(KLI(F_R, F_W) = 0 \) iff \(F_R = F_W \); however if \(F_R \neq F_W \), \(KLI(F_R, F_W) \) can be arbitrary large.

\[
(4.5) \quad KLI(F_R, F_W) = KLI(F_R, F_W) + KLI(F_W, F_R)
\]

Another example of symmetrization of the KLI is by [19].

Jin-L (JinL) [28]. It is a symmetric measure and it is always defined, assuming that \(0 = 0 \log_2(0/0) \). \(JinL(F_R, F_W) = 0 \) iff \(F_R = F_W \); and \(JinL(F_R, F_W) \) can be at most \(2N \) if \(F_R \neq F_W \).

\[
(4.6) \quad JinL(F_R, F_W) = KLI \left(F_R, \frac{F_R}{F_W} \right) + KLI \left(F_W, \frac{F_R}{F_W} \right)
\]

Jensen–Shannon (JS) [18, 35]. We describe this measure using Kullback–Leibler, but historically JS was formulated using the Shannon entropy and Kullback–Leibler is the generalization of this entropy.

\[
(4.7) \quad JS(F_R, F_W) = \frac{1}{2} \left[KLI \left(F_R, \frac{F_R}{F_W} \right) \right. + KLI \left(F_W, \frac{F_R}{F_W} \right]
\]

\(\chi^2 \) [21, 39, 17]. It is an asymmetric measure and it is defined for \(F_R \neq 0 \) (we do not count the contribution for
Table 1: The measure $\mathbb{D}_{p,v,\gamma,\psi}(F_R = x, F_W = y)$. Note ι is identity function.

<table>
<thead>
<tr>
<th>Name</th>
<th>Eq.</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhattacharyya</td>
<td>4.10</td>
<td>$\sum_i \sqrt{F_R(y_i)}$</td>
</tr>
<tr>
<td>Cambera</td>
<td>4.20</td>
<td>$\sum_i \sqrt{F_R(y_i)}$</td>
</tr>
<tr>
<td>χ^2</td>
<td>4.8</td>
<td>$\sum_i (x_i - y_i)^2$</td>
</tr>
<tr>
<td>Cramer–von Mises</td>
<td>4.18</td>
<td>$\sum_i (x_i - y_i)^2$</td>
</tr>
<tr>
<td>Euclidean</td>
<td>4.2</td>
<td>$\sum_i (x_i - y_i)^2$</td>
</tr>
<tr>
<td>Hellinger</td>
<td>4.9</td>
<td>$\frac{1}{2} \sum_i (x_i - y_i)^2$</td>
</tr>
<tr>
<td>Jin-K</td>
<td>4.6</td>
<td>$\frac{1}{2} \sum_i (x_i - y_i)^2$</td>
</tr>
<tr>
<td>Jin-L</td>
<td>4.6</td>
<td>$\frac{1}{2} \sum_i (x_i - y_i)^2$</td>
</tr>
<tr>
<td>Jensen–Shannon</td>
<td>4.7</td>
<td>$\frac{1}{2} (KL(y, x) + KL(y, x))$</td>
</tr>
<tr>
<td>Kolmogorov–Smirnov</td>
<td>4.15</td>
<td>$\max_i</td>
</tr>
<tr>
<td>Kullback–Leibler-I</td>
<td>4.4</td>
<td>$\sum_i x_i \log_2 \frac{x_i}{y_i}$</td>
</tr>
<tr>
<td>Kullback–Leibler-J</td>
<td>4.5</td>
<td>$\sum_i (x_i - y_i)^2 \log_2 \frac{x_i}{y_i}$</td>
</tr>
<tr>
<td>K_r</td>
<td>4.12</td>
<td>$\frac{1}{2} \sum_i (x_i - x_i \log_2 \frac{y_i}{x_i})$</td>
</tr>
<tr>
<td>K_s</td>
<td>4.13</td>
<td>$\frac{1}{2} \sum_i (x_i - x_i \log_2 \frac{y_i}{x_i})$</td>
</tr>
<tr>
<td>Minkowsky</td>
<td>4.19</td>
<td>$\sum_i (x_i - y_i)^2$</td>
</tr>
<tr>
<td>Variational</td>
<td>4.11</td>
<td>$\max_i</td>
</tr>
<tr>
<td>Ξ</td>
<td>4.17</td>
<td>$\max_i</td>
</tr>
</tbody>
</table>

\[
\chi^2(F_R, F_W) = \sum_{y = y_i \in R \cup W} \frac{(F_R(y) - F_W(y))^2}{F_R(y)}
\]

\[
H(F_R, F_W) = \frac{1}{2} \sum_{y = y_i \in R \cup W} \sqrt{F_R(y) - F_W(y)}^2
\]

Hellinger (H) [12, 39] also **Kolmogorov’s** [1]. It is a symmetric measure always defined. The square root operation normalizes the components values to make the component-wise comparison less biased (i.e., all components are between 0 and 1, and components close to 0 are moved towards 1/2, and components close to 1 are moved towards 1/2). Notice that $H(F_R, F_W) = 0$ iff $F_R = F_W$.

Bhattacharyya (B) [4, 22]. It is a symmetric measure always defined. Notice that $B(F_R, F_W) < N$ iff $F_R = F_W$; however, if $F_R \neq F_W$, $B(F_R, F_W)$ tends to 0. Notice that if applied to x and y PDFs, Bhattacharyya and Hellinger measure are related such that $1 - B(x, y) = H(x, y)$; however, for CDFs, Hellinger is more suitable because we can determine a significance measure. We present here Bhattacharyya for completeness.

\[
B(F_R, F_W) = \sum_{y = y_i \in R \cup W} \sqrt{F_R(y) F_W(y)}
\]

Variational Distance (V) [33, 1]. It is a symmetric measure always defined. Notice that $V(F_R, F_W) = 0$ iff $F_R = F_W$; however, if $F_R \neq F_W$, $V(F_R, F_W)$ is no larger than $2N$. This measure is also known as Manhattan measure or Kolmogorov’s variance distance [1].

\[
V(F_R, F_W) = \sum_{y = y_i \in R \cup W} \left| F_R(y) - F_W(y) \right|
\]

In the following as notational device, we indicate the sum $\sum_{y = y_i \in R \cup W} F_R(y)^2 F_W(y)^{1 - 2s}$ as $B_s(F_R, F_W)$ [5].

Generalized K_r [38]. This is a generalization of measure based on the Kullback–Leibler methodology.

\[
K_r(F_R, F_W) = \begin{cases} KL(F_R, F_W) & \text{if } r = 1 \\ \frac{1}{r-1} \log_2 \left(B_r(F_R, F_W) \right) & \text{if } r > 0 \end{cases}
\]

Generalized K_s [38]. For specific values of s and for PDFs, this can generate Bhattacharyya, Hellinger and Kullback–Leibler.

\[
K_s(F_R, F_W) = \begin{cases} KL(F_R, F_W) & \text{if } s = 1 \\ \frac{1}{s-1} \left(- 1 + B_s(F_R, F_W) \right) & \text{if } s > 0 \end{cases}
\]
Leibler and χ².

\[K^2_s(F_R, F_W) = \begin{cases}
KLI(F_R, F_W) & \text{if } s = 1 \\
\frac{1}{(s-1)x_s} \left(-1 + B_s(F_R, F_W) \right) & \text{if } s > 0
\end{cases} \]

Notice the equivalence \(K^2_{1/2}(x, y) = 2K^2_{1/2}(x, y) = 4(1 - B(x, y)) = 4H(x, y) \) and \(K^2_2(x, y) = 2K_2(x, y) = \chi^2(x, y) \), where \(x \) and \(y \) are PDFs. We present \(K_s, K^2_s \), and \(K_r \) for completeness, but we could not find a significance measure.

4.2 Classic CDF measures

We present the set of measures \(D(F_R, F_W) \) in the literature that are already used for CDFs. As in the previous equations, for notational convenience, define \(F_{RW/2}(y) \) as \((F_R(y) + F_W(y))/2 \).

Kolmogorov–Smirnov (KS) [25, 23, 8]. It is a symmetric measure always defined. Notice that \(KS(F_R, F_W) = 0 \) iff \(F_R = F_W; KS(F_R, F_W) \) is no larger than 1 if \(F_R \neq F_W \).

\[KS(F_R, F_W) = \sup_{y \in \mathbb{R}} |F_R(y) - F_W(y)| \geq \max_{y = s_y \in R \cup W} |F_R(y) - F_W(y)| \]

\[\phi \] [24]. It is a symmetric measure always defined. Notice that \(\phi(F_R, F_W) = 0 \) iff \(F_R = F_W; \phi(F_R, F_W) \) is no larger than 2 if \(F_R \neq F_W \).

\[\phi(F_R, F_W) = \sup_{y \in \mathbb{R}} \frac{|F_R(y) - F_W(y)|}{\sqrt{\min(F_{RW/2}, 1 - F_{RW/2})}} \geq \max_{y = s_y \in R \cup W} \frac{|F_R(y) - F_W(y)|}{\sqrt{\min(F_{RW/2}, 1 - F_{RW/2})}} \]

\[\Xi \] [24]. It is a symmetric measure always defined. Notice that \(\Xi(F_R, F_W) = 0 \) iff \(F_R = F_W; \Xi(F_R, F_W) \) is no larger than 2 if \(F_R \neq F_W \).

\[\Xi(F_R, F_W) = \sup_{y \in \mathbb{R}} \frac{|F_R(y) - F_W(y)|}{\sqrt{F_{RW/2} * (1 - F_{RW/2})}} \geq \max_{y = s_y \in R \cup W} \frac{|F_R(y) - F_W(y)|}{\sqrt{F_{RW/2} * (1 - F_{RW/2})}} \]

Cramér–von Mises (W²) [30]. It is a symmetric measure and it represents the Euclidean distance of a vector. Notice that \(W^2(F_R, F_W) = 0 \) iff \(F_R = F_W \); \(W^2(F_R, F_W) \) is no larger than 2N (the number of the window samples). This definition has been recently proposed in [30] and it does not follow exactly the original Anderson’s definition [2].

\[W^2(F_R, F_W) = \int_{-\infty}^{\infty} (F_R(y) - F_W(y))^2 dy \]

\[= \sum_{y = s_y \in R \cup W} (y_{i+1} - y_i)(F_R(y_i) - F_W(y_i))^2 \approx \sum_{y = s_y \in R \cup W} (F_R(y) - F_W(y))^2 \]

Minkowsky (M_r) [3, 44]. It is a symmetric parametrized measure and the generalization of both the Euclidean \((r = 2) \) and Variational \((r = 1) \) distance of a vector. Notice that \(M_r(F_R, F_W) = 0 \) iff \(F_R = F_W \). In our experiments, we set \(r = 3 \).

\[M_r(F_R, F_W) = \left(\sum_{y = s_y \in R \cup W} |F_R(y) - F_W(y)|^r \right)^\frac{1}{r} \]

Camberra (C) [7, 44]. It is a symmetric measure and it is a relative measure of the Euclidean distance as φ is a relative measure of the Kolmogorov–Smirnov distance. Notice that \(C(F_R, F_W) = 0 \) iff \(F_R = F_W \).

\[C(F_R, F_W) = \sum_{y = s_y \in R \cup W} \frac{|F_R(y) - F_W(y)|}{F_R(y) + F_W(y)} \]

4.3 Rank correlation measures

Among many such measures, we discuss only one.

Wilcoxon-Mann-Whitney (Wilcox) [43, 29]. It is a symmetric test and it is based on the ranks of the events happening in each series. This is a standard test and it is available in R. We also used the t-test.

5 Significance or p-value of a measure

For some measures, the distribution of the measure values is well studied and known, e.g., \(\sqrt{N}KS(F_R, F_W) \) for CDFs extracted by windows with N points or \(\chi^2(F_R, F_W) \) for PDFs with N buckets. For some others, the distribution can be determined by simulation, e.g., \(\phi(F_R, F_W) \) or \(\Xi(F_R, F_W) \). Thus, we aim at the determination of the measure significance by either tables or simulations, thereby avoiding bootstrap, i.e., simulation on the fly. Bootstrap is a powerful approach but it will require a training set and an a priori knowledge of the series, giving pressure on the final user of this statistical measures.

We have found empirically that simulation suffices for most of the measures used in this paper and we did obtain a distribution function of the measure values. However, we could not find a distribution function for the following measures:

1. KLI because it produces negative measures,
2. Bhattacharyya and the generalized measures, K_s, K_s^2, and K_s, because we cannot find a normalizing function $\varphi(N)$, e.g., see Table 1.

5.1 Simulation, D, and its CDF We can describe our simulation process as follows. We take a measure D, e.g., $D = KS$. We select the number of sample N, e.g., $N = 1000$. We generate (randomly) M pairs of N samples each, e.g., $M = 5000$, taken from the same stochastic process.

Thus, we collect the measure values (x) and we determine a CDF and we define it as $F_N^i(x)$. If we repeat the process k times, we may have different CDFs F_N^i with $i \in [1, k]$. In practice, what we obtain is a cloud of functions $\{F_N^i\}_{1 \leq i \leq k}$. When we change N, the number of samples, we are going to have clouds, i.e., $\{F_N^i\}_{1 \leq i \leq k, N}$. For any number of samples N, we want to determine the normalizing function $\varphi(N)$ that makes it possible to compare the measures with respect other sample sizes ($F_{N_0} \sim F_{N_1}$).

In Figure 1, we show the simulation for $\sqrt{N} \ast KS$ (i.e., $\varphi(N) = \sqrt{N}$) for different sample sizes $N \in [1, 20] \ast 100$ and thus the cloud of distributions.

To combine the deterministic nature of $\varphi(N)$ with the stochastic nature of the measure value, we need to estimate $\varphi(N)$ and to do so we take $\frac{1}{\varphi(N)} = E[D_{\varphi=1}]$, which is the average distance for the different measures with no normalizing factor, e.g., see Table 2. Then, we plug in the value(s) in the measure D. Before we proceed further, a bibliographic note about how to estimate the average $E[D]$ is in order. This estimate boils down to the properties of a random walk and the area below its path; even though there is no clear and complete treatment for all these measures our experimental results confirm the results in the literature for the variational distance $E[V(R||W)] = \frac{1}{2} \sqrt{\pi N}$, see [13, 37].

Thus, our simulations obtain CDF clouds as a function of N. We define a representation of the behavior of the measure CDF as a stochastic function

$$F_D(x) \in N(\bar{\mu}(x), \bar{\sigma}(x)),$$

(5.21) where $\bar{\mu}(x)$ is an estimate of the representative CDF and $\bar{\sigma}(x)$ is a function representing our confidence about the representative function.

We assume that we have found a representative distribution when 90% of F_N are included in the intervals $\bar{\mu}(x) \pm 2\bar{\sigma}(x)$, giving an empirical justification in saying the CDFs $F_N(x)$ (as functions) have a normal distribution. Moreover, the empirical $\bar{\mu}(x)$ should be a smooth function without presenting anomaly accumulations or steps because of the merging of $F_N(x)$ with different N. Thus, we may take $\bar{\mu}(x)$ as a representative distribution function of a measure, e.g., Hellinger.

Next we present our approach and findings: We start by showing how to determine empirically the functions $\bar{\mu}(x)$ and $\bar{\sigma}(x)$ (Section 5.2); we then show that the $\bar{\mu}(x)$ is a CDF that is independent of the input CDFs (Section 5.3).

![Figure 1: The Kolmogorov–Smirnov measure CDFs (top) and the Hellinger-measure CDFs (bottom).](image)

5.2 Window-Size independence, how $\varphi(N)$ comes to play In Figure 1(bottom), we present the result of the simulation for the measures Hellinger (H) and, in Figure 1(top), Kolmogorov–Smirnov ($\sqrt{NK_S}$). For every window size between 100 and 2000 at increments of 100, we generated 1000 intervals withdrawn from the same normal distribution $\mathcal{N}(0, 1)$. Then we computed the value of the measures determining the CDF supporting the similarity assumption H_0. In Figure 1(top) and 1(bottom), for window sizes $N_0=100$ (dark blue) and $N_1=2000$ (azure), both measures have CDFs that are similar. This is possible because of $\varphi(N)$.

Average $\bar{\mu}(x)$. For each window size, we have a
different CDF \(F_N(x) \). We determine the average of the distribution as follows:

\[
F_{\bar{x}}(x) = \frac{1}{M} \sum_{N} F_N(x)
\]

(5.22)

Notice that \(F_{\bar{x}} \) is still a distribution and it could be used as a representative of the family of distributions. In fact, \(F_1(x) + F_2(x) \) is not a valid distribution whereas \(\frac{1}{2}(F_1(x) + F_2(x)) \) is. In Figure 1(bottom), we draw the average \(\bar{x} \) in red. With our assumption about the nature of the distribution function, \(F_{\bar{x}}(x) \) most likely should tend to \(\bar{x}(x) \).

Variance \(\sigma(x) \). A natural definition of distribution variance is as follows:

\[
F_{\sigma}(x) = \sqrt{\frac{1}{M} \sum_{N} (F_N(x) - F_{\bar{x}}(x))^2}
\]

(5.23)

In general \(F_{\sigma} \) is not a distribution, and more precisely the application of subtraction and exponentiation makes the result not be a valid distribution. This is because the result \(F_N(x) - F_{\bar{x}}(x) \) can be negative for some \(x \). In Figure 1(bottom), we plot \(F_{\bar{x}}(x) + 2F_{\sigma}(x) \) using a dark-red color, and we plot \(F_{\bar{x}}(x) - 2F_{\sigma}(x) \) using a pink color.

We assume that we have found a representative distribution when 19 of the 20 CDFs, or 90% of them, are included in the intervals \(F_{\bar{x}}(x) \pm 2F_{\sigma}(x) \) suggesting that the CDFs \(F_N(x) \) (as functions) has a normal distribution \(N(F_{\bar{x}}(x), F_{\sigma}(x)) \) and as \(M \) gets larger this should converge to our assumption \(N(\bar{x}(x), \sigma(x)) \). Moreover, the empirical \(F_{\bar{x}}(x) \) should be a smooth function without presenting anomaly accumulations or steps because of the merging of \(F_N(x) \) with different \(N \). Thus, we may take \(F_{\bar{x}}(x) \) as representative distribution function of the measure (i.e., for Hellinger). ¹

5.3 Input-Distribution independence

Take \(F_R(y) \) as \(Y \). That is, consider the output of a CDF as a stochastic variable. Assume that \(G_R(Y) \) is the inverse function of \(F_R \) (with the proper definition for a finite number of samples \(N \)). The event \(\{F_R(y) \leq t \} \) is identical to the event \(\{y \leq G_R(t) \} \), which has probability \(F_R(G_R(t)) = t \). This leads to \(P[Y \leq t] = t \) with \(t \in [0, 1] \) (see [8], Ch.1, Section 12). Thus, when we consider as input \(Y = F_R(y) \), we actually obtain a measure for which the distribution of the input should not affect the distribution of the measure because \(F_R \) is uniformly distributed independently of \(R \).

What we have also found experimentally is that \(F_{\bar{x}}(x) \) is independent of the distribution of the inputs (i.e., \(R \) and \(W \)). Moreover, the distribution function \(F_{\bar{x}}(x) \) could be used as a representative distribution.

In practice, we repeated the previous simulation (Section 5.2) for window sizes from 100 to 2000, collecting 1000, 2000, 5000, and 10000 measure samples per window size using two different stochastic processes: normal distribution \(N(0, 1) \) and uniform distribution \(U(0, 1) \). For each stochastic process, we obtained 4 representative distribution functions. We then compared them in a \(4 \times 4 \) table (by size and by input distribution).

By visual inspection and by applying the measures

¹Notice that in practice, we could not find a CDF for Bhattacharyya measure because we could not find a smooth CDF.

Table 2: Simulation of the expectation for the null hypothesis \(H_0 \) measure (i.e., \(E[D] \)).

<table>
<thead>
<tr>
<th>(N)</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
<th>1000000</th>
<th>(1/\phi(N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E[\phi])</td>
<td>0.70104</td>
<td>0.28269</td>
<td>0.09925</td>
<td>0.03391</td>
<td>0.01141</td>
<td>0.00374</td>
<td>~ (\log(N)/\sqrt{N})</td>
</tr>
<tr>
<td>(E[\Xi])</td>
<td>0.80613</td>
<td>0.30643</td>
<td>0.10466</td>
<td>0.03523</td>
<td>0.01169</td>
<td>0.00383</td>
<td>~ (\log(N)/\sqrt{N})</td>
</tr>
<tr>
<td>(E[KIJ])</td>
<td>0.34440</td>
<td>0.11867</td>
<td>0.03830</td>
<td>0.01227</td>
<td>0.00383</td>
<td>0.00124</td>
<td>(\sim 1/\sqrt{N}) [8]</td>
</tr>
<tr>
<td>(E[KL])</td>
<td>1.04086</td>
<td>1.95563</td>
<td>1.00179</td>
<td>1.76800</td>
<td>-0.10939</td>
<td>51.66521</td>
<td>N/A</td>
</tr>
<tr>
<td>(E[KLJ])</td>
<td>2.10635</td>
<td>2.87245</td>
<td>2.84168</td>
<td>2.94492</td>
<td>2.81301</td>
<td>3.06639</td>
<td>constant</td>
</tr>
<tr>
<td>(E[JnK])</td>
<td>0.40072</td>
<td>0.63525</td>
<td>0.14532</td>
<td>0.51653</td>
<td>-0.40636</td>
<td>25.44923</td>
<td>N/A</td>
</tr>
<tr>
<td>(E[JnL])</td>
<td>0.83340</td>
<td>0.74388</td>
<td>0.71258</td>
<td>0.73634</td>
<td>0.70326</td>
<td>0.76659</td>
<td>constant</td>
</tr>
<tr>
<td>(E[J])</td>
<td>0.41670</td>
<td>0.37194</td>
<td>0.35629</td>
<td>0.36817</td>
<td>0.35163</td>
<td>0.38329</td>
<td>constant</td>
</tr>
<tr>
<td>(E[\chi^2])</td>
<td>1.91610</td>
<td>2.11921</td>
<td>2.00276</td>
<td>2.04105</td>
<td>1.95051</td>
<td>2.12593</td>
<td>constant</td>
</tr>
<tr>
<td>(E[V])</td>
<td>2.83222</td>
<td>8.88756</td>
<td>28.09942</td>
<td>89.08333</td>
<td>272.74629</td>
<td>915.27286</td>
<td>(\sim \sqrt{N})</td>
</tr>
<tr>
<td>(E[H])</td>
<td>0.34231</td>
<td>0.26507</td>
<td>0.24784</td>
<td>0.25529</td>
<td>0.24374</td>
<td>0.26568</td>
<td>constant</td>
</tr>
<tr>
<td>(E[B])</td>
<td>10.15768</td>
<td>100.23492</td>
<td>1000.25215</td>
<td>10000.24470</td>
<td>100000.25625</td>
<td>1000000.23429</td>
<td>(\sim N)</td>
</tr>
<tr>
<td>(E[W])</td>
<td>0.70672</td>
<td>0.67146</td>
<td>0.66599</td>
<td>0.67193</td>
<td>0.63212</td>
<td>0.71241</td>
<td>constant</td>
</tr>
<tr>
<td>(E[E])</td>
<td>0.78139</td>
<td>0.76166</td>
<td>0.75571</td>
<td>0.75984</td>
<td>0.73908</td>
<td>0.77747</td>
<td>constant</td>
</tr>
<tr>
<td>(E[M_{p=3}])</td>
<td>0.53319</td>
<td>0.35486</td>
<td>0.23930</td>
<td>0.16416</td>
<td>0.10910</td>
<td>0.07781</td>
<td>(\sim 1/\log_2(N))</td>
</tr>
<tr>
<td>(E[C])</td>
<td>4.65470</td>
<td>16.74404</td>
<td>54.79298</td>
<td>177.49281</td>
<td>557.46331</td>
<td>1809.98318</td>
<td>(\sim \sqrt{N} \sim N^{0.89})</td>
</tr>
</tbody>
</table>

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
here implemented, e.g., \(\phi \), or just already tabulated, e.g., Kolmogorov–Smirnov, we have found that the measure distributions are equivalent. This gives us strong evidence that our measures such as Jensen–Shannon applied to CDFs have the same properties of the Kolmogorov–Smirnov measure; thus, we have found that JS has a measure distribution independent of the nature of the input stochastic processes and it can be simulated just once.

We then used the larger set (the simulation using 10,000 samples) to determine different \(p \)-values and thus measures thresholds for each \(p \)-value. For example, for each measure we determine the threshold value having the equivalent \(p \)-value of 95%. This means that if we consider two intervals \(R \) and \(W \), we determine \(F_R \) and \(F_W \); we measure \(JS(F_R, F_W) \) and if the measure has value larger than the threshold, we know that only 5% of intervals drawn from the same stochastic process have same or larger measure; we may then decide to reject the assumption that \(W \) and \(R \) are similar because there is too little of a probability. The rest of the experiments used the computed thresholds.

5.4 Disagreement (with Multiple Measures) A measure is designed to detect and to quantify the differences between its inputs. Different measures are keen to quantify different properties of the inputs so they are not all alike and they do not perform all the same.

In this paper, we investigate and quantify how the aggregation of different measures can affect the sensitivity of a non-parametric measuring system. Consensus is a simple approach of using \(M \) different measures and a decision is taken only when a quorum of the measures agrees. All the measures presented in this paper are designed to work better in verifying that two distributions are statistically equivalent (the \(H_0 \) hypothesis).

We quantify the detection power of different measures and we determine what is the minimum quorum or rate for a consensus-based approach. For example, 10% or 20% disagreement means that up to 2 measures in a set of 10 measures suggest that the two distributions are different. In particular, we want to show that our measure extensions as in Section 4.1 are a good addition.

6 Experimental results

We organize the measures in two sets: standard and extension.

Standard. In this set we have 5 measures: Wilcoxon-Mann-Whitney, t-test, Kolmogorov–Smirnov, \(\phi \), and \(\Xi \).

Extension. In this set we have 9 measures: Kullback–Leibler (symmetric), Jin-L, Jensen–Shannon, \(\chi^2 \), Hellinger, Variational, Cramér–von Mises, Minkowsky, and Euclid. Among these, Cramér–von Mises has been previously used in the literature; however, none has been used for series in the continuous domain \(\mathbb{R} \), to the best of our knowledge.

We show that our extension measures are competitive with the standard ones and they may be used separately or together. The overall measure will permit a better and more effective statistical test for series with real values.

6.1 Setup We apply the standard and extension measures separately and together on a set of series generated as follows. For 1000 times, we repeat the following process:

- We randomly choose the window size \(W \in [1, 10] \times 100 \), and have no bias on a single window size;
- We randomly choose the number of windows in the series \(M \in [2, 20] \);
- We randomly choose a window \(E \) in the series that will be withdrawn from the same distribution as the first window in \([2, M] \).

Then, we generate the series in three different ways as follows: changing both average and variance, average only, and variance only.

Changing Both Average and Variance. Using a normal distribution generator \(N(0, 10) \), we determined the reference average \(m_0 \) and variance \(v_0 \). We generated the two windows \(R \) and \(E \) by either using a normal distribution \(N(m_0, v_0) \) or a uniform distribution \(U(m_0 - v_0, m_0 + v_0) \). Then, for every other window, we selected at random \(m_i \) and \(v_i \) from \(N(0, 10) \). The system using a 20% disagreement threshold recognized the similarity with a sharp positive pulse and correctly flagged all the others interval as different.

Changing Average Only. We generated the two windows \(R \) and \(E \) using either a normal distribution or a uniform distribution as before \((m_0 \) and \(v_0) \). Then, for every other window we selected at random \(m_i = m_0 + r * \frac{m_0}{2} \) where \(r = \pm 1 \), switching its sign with equal probability. Thus, as \(M \) gets larger, the windows become closer to the reference \(R \). The system using a 20% disagreement threshold recognized the similarity with a sharp positive pulse and the system correctly flagged all the others interval as different.

Changing Variance Only. We generated the two windows \(R \) and \(E \) using either a normal distribution or a uniform distribution as before \((m_0 \) and \(v_0) \). Then, for every other window we selected at random \(v_i = v_0 + r * \frac{v_0}{2} \) where \(r = \pm 1 \), switching its sign with equal probability. Thus, as \(M \) gets larger, the windows become closer to the reference \(R \). The system using a 20% disagreement threshold recognized the similarity with a rather slow positive pulse; however, it also recognized other intervals as similar, resulting in false positives.

For the two experiments where we changed either the average or the variance, we generated a series that converged to the reference window. Yet, there was only one window in
the series that had the same attributes of the reference (for a total of 1000), but for large enough \(M \), the measures would find it harder and harder to distinguish them.

Window sliding. The moving window that sweeps the series use a step of \(x \) epochs.

Disagreement. We quantify the number of times the system recognizes two windows as *the same* for different level of disagreement (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). That is, with a disagreement of 0.1, two windows are recognized as *equal* if at most 1 over 10 measures does not say so (and at least 9 do).

Matching and found. With a *match*, we identify the positive response of the system for the two windows \(R \) and \(E \), which we know are equal. With a *found*, we identify the positive replies of the system independently of the position in the series (because a sliding window as a fixed step of 100 instead of the effective window size). The golden standard for matches is 1000, the number of windows that are actually drawn from the same distribution.

Figure 2: Average and variance change: Sum of false positives and false negatives.

Summary results In Figure 2, we present the number of times we commit an error (*found* − 1000 + 1000 − *matches*), that is, when the system says that two windows are equal minus the golden standard 1000 (false positives), plus the number of misses of the system (false negatives). This is the summary for the experiments where both average and variance change. Notice that the standard approach has a smaller error for the range 0.1 and 0.2 for uniformly distributed series. However it has the same error of our extensions for series using normal distributions. Overall, our extension work well with a steady performance as function of the disagreement factor.

In Figure 3, we present the error for average change only and variance change only. Notice that for average only, the combination of both standard and extension measures presents the smallest error so a Gestalt effect.

Average and variance results In Figure 4, we present the number of perfect matches and the number of found matches by all approaches. The standard approach appears to be superior using the right combination of consensus/disagreement for series built using uniform distributions. However, our extensions deliver a predictable and ultimately better performance for inputs drawn from a normal stochastic process.

Average only results Our extensions seem always superior to the standard approach, e.g., see Figure 5, making our approach more sensitive in detecting average variation.

Variance only results In Figure 6, we can see a similar performance as in Figure 4, where the standard measures offer a more sensitive tool for the true similarity (or anomaly) detection.
7 Conclusions

We presented and tested 23 measures. We compared their discriminating performance for time series in the continuous domain \(\mathbb{R} \). Our main contributions are a unified treatment of all the measures and the modification of \(\mathbb{R} \)-based measures to work with \(\mathbb{R} \). We have validated our contributions with experimental results. We believe our contributions enrich the state-of-the-art tool set available to researchers for the practical evaluation of non-parametric measures.

As future work, we are planning to investigate further the relationship between the number and type of measures, the \(p \)-value factor, and the nature of the time series. We are also hoping to present results from applications at Yahoo!

Acknowledgments

We would like to thank Deepak Agarwal, Daniel Kifer, Tony Thrall, and Ann Kalinowski for their invaluable advice and time for numerous discussions.

References

Figure 6: Variance change only: Matches (top) and log $\left(\frac{1000 - \text{Found}}{\text{1000}} \right)$ (bottom)

...

[34] S. N. RODIONOV, A brief overview of the regime shift detection methods, in Large-Scale Disturbances (Regime Shifts) and Recovery in Aquatic Ecosystems: Challenges for Management Toward Sustainability, V. Velikova and N. Chipev, eds., Varna, Bulgaria, Jun 2005.

